skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van_Paridon, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nölle, J; Raviv, L; Graham, E; Hartmann, S; Jadoul, Y; Josserand, M; Matzinger, T; Mudd, K; Pleyer, M; Slonimska, A (Ed.)
    Generic statements like “tigers are striped” and “cars have radios” com- municate information that is, in general, true. However, while the first state- ment is true *in principle*, the second is true only statistically. People are exquisitely sensitive to this principled-vs-statistical distinction. It has been argued that this ability to distinguish between something being true by virtue of it being a category member versus being true because of mere statistical regularity, is a general property of people’s conceptual machinery and cannot itself be learned. We investigate whether the distinction between principled and statistical properties can be learned from language itself. If so, it raises the possibility that language experience can bootstrap core conceptual dis- tinctions and that it is possible to learn sophisticated causal models directly from language. We find that language models are all sensitive to statistical prevalence, but struggle with representing the principled-vs-statistical dis- tinction controlling for prevalence. Until GPT-4, which succeeds. 
    more » « less